Skip to main content
Log in

Core flooding tests to investigate the effects of IFT reduction and wettability alteration on oil recovery during MEOR process in an Iranian oil reservoir

  • Applied microbial and cell physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Microbial enhanced oil recovery (MEOR) refers to the process of using bacterial activities for more oil recovery from oil reservoirs mainly by interfacial tension reduction and wettability alteration mechanisms. Investigating the impact of these two mechanisms on enhanced oil recovery during MEOR process is the main objective of this work. Different analytical methods such as oil spreading and surface activity measurements were utilized to screen the biosurfactant-producing bacteria isolated from the brine of a specific oil reservoir located in the southwest of Iran. The isolates identified by 16S rDNA and biochemical analysis as Enterobacter cloacae (Persian Type Culture Collection (PTCC) 1798) and Enterobacter hormaechei (PTCC 1799) produce 1.53 g/l of biosurfactant. The produced biosurfactant caused substantial surface tension reduction of the growth medium and interfacial tension reduction between oil and brine to 31 and 3.2 mN/m from the original value of 72 and 29 mN/m, respectively. A novel set of core flooding tests, including in situ and ex situ scenarios, was designed to explore the potential of the isolated consortium as an agent for MEOR process. Besides, the individual effects of wettability alteration and IFT reduction on oil recovery efficiency by this process were investigated. The results show that the wettability alteration of the reservoir rock toward neutrally wet condition in the course of the adsorption of bacteria cells and biofilm formation are the dominant mechanisms on the improvement of oil recovery efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abbasi H, Hamedi MM, Lotfabad TB, Zahiri HS, Sharafi H, Masoomi F, Moosavi-Movahedi AA, Ortiz A, Amanlou M, Noghabi KA (2012) Biosurfactant-producing bacterium, Pseudomonas aeruginosa MA01 isolated from spoiled apples: physicochemical and structural characteristics of isolated biosurfactant. J Biosci Bioeng 113:211–219. doi:10.1016/j.jbiosc.2011.10.002

    Article  CAS  Google Scholar 

  • Abouseoud M, Maachi R, Amrane A, Boudergua S, Nabi A (2008) Evaluation of different carbon and nitrogen sources in production of biosurfactant by Pseudomonas fluorescens. Desalination 223:143–151. doi:10.1016/j.desal.2007.01.198

    Article  CAS  Google Scholar 

  • Afrapoli MS, Crescente C, Alipour S, Torsaeter O (2009) The effect of bacterial solution on the wettability index and residual oil saturation in sandstone. J Pet Sci Eng 69:255–260. doi:10.1016/j.petrol.2009.09.002

    Article  Google Scholar 

  • Afrapoli MS, Alipour S, Torsaeter O (2010) Effect of wettability and interfacial tension on microbial improved oil recovery with Rhodococcus sp 094. Paper presented at the SPE Improved Oil Recovery Symposium, Tulsa, Oklahoma, USA, 24–28 April 2010. doi: 10.2118/129707-ms

  • Afshar S, Lotfabad TB, Roostaazad R, Najafabadi AR, Noghabi KA (2008) Comparative approach for detection of biosurfactant-producing bacteria isolated from Ahvaz petroleum excavation areas in south of Iran. Ann Microbiol 58:555–559. doi:10.1007/bf03175557

    Article  CAS  Google Scholar 

  • Almehaideb R, Zekri AY (2002) Laboratory investigation of parameters affecting optimization of microbial flooding in carbonate reservoirs. Pet Sci Technol 20:377–392. doi:10.1081/lft-120002107

    Article  CAS  Google Scholar 

  • Al-Sulaimani H, Al-Wahaibi Y, Al-Bahry S, Elshafie A, Al-Bemani A, Joshi S, Ayatollahi S (2012) Residual-oil recovery through injection of biosurfactant, chemical surfactant, and mixtures of both under reservoir temperatures: induced-wettability and interfacial-tension effects. SPE Reserv Eval Eng 15:210–217. doi:10.2118/158022-pa

    Google Scholar 

  • Amani H, Sarrafzadeh MH, Haghighi M, Mehrnia MR (2010) Comparative study of biosurfactant producing bacteria in MEOR applications. J Pet Sci Eng 75:209–214. doi:10.1016/j.petrol.2010.11.008

    Article  CAS  Google Scholar 

  • Amézcua-Vega C, Poggi-Varaldo HM, Esparza-García F, Ríos-Leal E, Rodríguez-Vázquez R (2007) Effect of culture conditions on fatty acids composition of a biosurfactant produced by Candida ingens and changes of surface tension of culture media. Bioresour Technol 98:237–240. doi:10.1016/j.biortech.2005.11.025

    Article  Google Scholar 

  • Anderson W (1986) Wettability literature survey—part 2: wettability measurement. J Pet Tech 38:1246–1262. doi:10.2118/13933-PA

    CAS  Google Scholar 

  • Armstrong RT, Wildenschild D (2012) Investigating the pore-scale mechanisms of microbial enhanced oil recovery. J Pet Sci Eng 94–95:155–164. doi:10.1016/j.petrol.2012.06.031

    Article  Google Scholar 

  • Ayirala SC, Rao DN (2004) Multiphase flow and wettability effects of surfactants in porous media. Colloids Surf A 241:313–322. doi:10.1016/j.colsurfa.2004.04.047

    Article  CAS  Google Scholar 

  • Banat IM, Makkar RS, Cameotra S (2000) Potential commercial applications of microbial surfactants. Appl Microbiol Biotechnol 53:495–508. doi:10.1007/s002530051648

    Article  CAS  Google Scholar 

  • Banat IM, Franzetti A, Gandolfi I, Bestetti G, Martinotti MG, Fracchia L, Smyth TJ, Marchant R (2010) Microbial biosurfactants production, applications and future potential. Appl Microbiol Biotechnol 87:427–444. doi:10.1007/s00253-010-2589-0

    Article  CAS  Google Scholar 

  • Bharali P, Das S, Konwar B, Thakur A (2011) Crude biosurfactant from thermophilic Alcaligenes faecalis: feasibility in petro-spill bioremediation. Int Biodeterior Biodegrad 65:682–690

    Article  CAS  Google Scholar 

  • Bordoloi N, Konwar B (2009) Bacterial biosurfactant in enhancing solubility and metabolism of petroleum hydrocarbons. J Hazard Mater 170:495–505. doi:10.1016/j.jhazmat.2009.04.136

    Article  CAS  Google Scholar 

  • Bryant RS, Burchfield TE (1989) Review of microbial technology for improving oil recovery. SPE Reservoir Eng 4:151–154. doi:10.2118/16646-pa

    CAS  Google Scholar 

  • Burgos-Díaz C, Pons R, Espuny M, Aranda F, Teruel J, Manresa A, Ortiz A, Marqués A (2011) Isolation and partial characterization of a biosurfactant mixture produced by Sphingobacterium sp. isolated from soil. J Colloid Interface Sci. doi:10.1016/j.jcis.2011.05.054

    Google Scholar 

  • Chisholm JL, Kashikar SV, Knapp RM, Mclnerney MJ, Menzies DE, Silfanus NJ (1990) Microbial enhanced oil recovery: interfacial tension and gas-induced relative permeability effects, SPE-20481. Paper presented at the SPE Annual Technical Conference and Exhibition, New Orleans, Louisiana, 23–26 September 1990. doi: 10.2118/20481-ms

  • Cooper DG, Goldenberg BG (1987) Surface-active agents from two Bacillus species. Appl Environ Microbiol 53:224–229

    CAS  Google Scholar 

  • Crescente CM, Torsaeter O, Hultmann L, Stroem A, Rasmussen K, Kowalewski E (2006) An experimental study of driving mechanisms in MIOR processes by using Rhodococcus sp. 094. Paper presented at the SPE/DOE Symposium on Improved Oil Recovery, Tulsa, Oklahoma, USA, 22–26 April. doi: 10.2118/100033-ms

  • Cuiec L (1984) Rock/crude-oil interactions and wettability: an attempt to understand their interrelation. Paper presented at the SPE Annual Technical Conference and Exhibition, Houston, Texas, 16–19 September 1984. doi: 10.2118/13211-ms

  • Darvishi P, Ayatollahi S, Mowla D, Niazi A (2011) Biosurfactant production under extreme environmental conditions by an efficient microbial consortium, ERCPPI-2. Colloids Surf B 84:293–300. doi:10.1016/j.colsurfb.2011.01.011

    Article  Google Scholar 

  • Das K, Mukherjee AK (2005) Characterization of biochemical properties and biological activities of biosurfactants produced by Pseudomonas aeruginosa mucoid and non-mucoid strains isolated from hydrocarbon-contaminated soil samples. Appl Microbiol Biotechnol 69:192–199. doi:10.1007/s00253-005-1975-5

    Article  CAS  Google Scholar 

  • Desai JD, Banat IM (1997) Microbial production of surfactants and their commercial potential. Microbiol Mol Biol Rev 61:47–64

    CAS  Google Scholar 

  • DeSantis T, Dubosarskiy I, Murray S, Andersen G (2003) Comprehensive aligned sequence construction for automated design of effective probes (CASCADE-P) using 16S rDNA. Bioinformatics 19:1461–1468. doi:10.1093/bioinformatics/btg200

    Article  CAS  Google Scholar 

  • Donaldson EC, Chilingar GV, Yen TF (1989) Microbial enhanced oil recovery. Elsevier, Amsterdam

    Google Scholar 

  • Dyke M, Gulley S, Lee H, Trevors J (1993) Evaluation of microbial surfactants for recovery of hydrophobic pollutants from soil. J Ind Microbiol 11:163–170. doi:10.1007/bf01583718

    Article  Google Scholar 

  • Fiechter A (1992) Biosurfactants: moving towards industrial application. Trends Food Sci Technol 3:286–293. doi:10.1016/s0924-2244(10)80013-5

    Article  CAS  Google Scholar 

  • Gandler G, Gbosi A, Bryant SL, Britton LN (2006) Mechanistic understanding of microbial plugging for improved sweep efficiency. Paper presented at the SPE/DOE Symposium on Improved Oil Recovery, Tulsa, Oklahoma, USA, 22–26 April 2006. doi: 10.2118/100048-ms

  • Ghojavand H, Vahabzadeh F, Mehranian M, Radmehr M, Shahraki KA, Zolfagharian F, Emadi M, Roayaei E (2008) Isolation of thermotolerant, halotolerant, facultative biosurfactant-producing bacteria. Appl Microbiol Biotechnol 80:1073–1085. doi:10.1007/s00253-008-1570-7

    Article  CAS  Google Scholar 

  • Gray M, Yeung A, Foght J, Yarranton HW (2008) Potential microbial enhanced oil recovery processes: a critical analysis. Paper presented at the SPE Annual Technical Conference and Exhibition, Denver, Colorado, USA, 21–24 September 2008. doi: 10.2118/114676-ms

  • Hiorth A, Kaster K, Lohne A, Siqveland OK, Berland H, Giske NH, Stavland A (2007) Microbial enhanced oil recovery-mechanism. Paper presented at the International Symposium of the Society of Core Analysts, Calgary, Canada (10-13 September 2007)

  • Huy NQ, Jin S, Amada K, Haruki M, Huu NB, Hang DT, Ha DTC, Imanaka T, Morikawa M, Kanaya S (1999) Characterization of petroleum-degrading bacteria from oil-contaminated sites in Vietnam. J Biosci Bioeng 88:100–102. doi:10.1016/S1389-1723(99)80184-4

    Article  CAS  Google Scholar 

  • Jarrahian K, Seiedi O, Sheykhan M, Sefti MV, Ayatollahi S (2012) Wettability alteration of carbonate rocks by surfactants: a mechanistic study. Colloids Surf A 410:1–10. doi:10.1016/j.colsurfa.2012.06.007

    Article  CAS  Google Scholar 

  • Jr Fulcher RA, Ertekin T, Stahl CD (1985) Effect of capillary number and its constituents on two-phase relative permeability curves. J Pet Technol 37:249–260. doi:10.2118/12170-pa

    CAS  Google Scholar 

  • Karimi M, Mahmoodi M, Niazi A, Al-Wahaibi Y, Ayatollahi S (2012) Investigating wettability alteration during MEOR process, a micro/macro scale analysis. Colloids Surf B Biointerfaces 95:129–136

    Article  CAS  Google Scholar 

  • Kim SH, Lim EJ, Lee SO, Lee JD, Lee TH (2000) Purification and characterization of biosurfactants from Nocardia sp. L-417. Biotechnol Appl Biochem 31:249–253. doi:10.1042/ba19990111

    Article  Google Scholar 

  • Kowalewski E, Rueslåtten I, Steen K, Bødtker G, Torsæter O (2006) Microbial improved oil recovery—bacterial induced wettability and interfacial tension effects on oil production. J Pet Sci Eng 52:275–286. doi:10.1016/j.petrol.2006.03.011

    Article  CAS  Google Scholar 

  • Kryachko Y, Nathoo S, Lai P, Voordouw J, Prenner EJ, Voordouw G (2012) Prospects for using native and recombinant rhamnolipid producers for microbially enhanced oil recovery. Int Biodeterior Biodegrad. doi:10.1016/j.ibiod.2012.09.012

    Google Scholar 

  • Lazar I, Petrisor I, Yen T (2007) Microbial enhanced oil recovery (MEOR). Pet Sci Technol 25:1353–1366. doi:10.1080/10916460701287714

    Article  CAS  Google Scholar 

  • Lin SC (1999) Biosurfactants: recent advances. J Chem Technol Biotechnol 66:109–120. doi:10.1002/(SICI)1097-4660(199606)66:2<109::AID-JCTB477>3.0.CO;2-2

    Article  Google Scholar 

  • Lotfabad TB, Shourian M, Roostaazad R, Najafabadi AR, Adelzadeh MR, Noghabi KA (2009) An efficient biosurfactant-producing bacterium Pseudomonas aeruginosa MR01, isolated from oil excavation areas in south of Iran. Colloids Surf B 69:183–193. doi:10.1016/j.colsurfb.2008.11.018

    Article  CAS  Google Scholar 

  • Madigan MT, Martinko JM, Stahl DA, Clark DP (2010) Brock Biology of Microorganisms, 13th edn. Pearson Benjamin Cummings, San Francisco

    Google Scholar 

  • Mäntynen V, Lindström K (1998) A rapid PCR-based DNA test for enterotoxic Bacillus cereus. Appl Environ Microbiol 64:1634–1639

    Google Scholar 

  • Maudgalya S, Knapp RM, McInerney M (2007) Microbially enhanced oil recovery technologies. A review of the past, present and future. Paper presented at the Production and Operations Symposium, Oklahoma City, Oklahoma, USA, 31 March-3 April 2007. doi: 10.2118/106978-ms

  • McInerney M, Duncan K, Youssef N, Fincher T, Maudgalya S, Folmsbee M, Knapp R, Simpson RR, Ravi N, Nagle D (2003) Development of microorganisms with improved transport and biosurfactant activity for enhanced oil recovery. Annual Report for DOE DEFE-02NT15321. University of Oklahoma

  • Morrow NR (1990) Wettability and its effect on oil recovery. J Pet Tech 42:1476–1484. doi:10.2118/21621-pa

    CAS  Google Scholar 

  • Nitschke M, Costa S (2007) Biosurfactants in food industry. Trends Food Sci Technol 18:252–259. doi:10.1016/j.tifs.2007.01.002

    Article  CAS  Google Scholar 

  • Persson A, Molin G (1987) Capacity for biosurfactant production of environmental Pseudomonas and Vibrionaceae growing on carbohydrates. Appl Microbiol Biotechnol 26:439–442. doi:10.1007/bf00253528

    Article  CAS  Google Scholar 

  • Płaza GA, Zjawiony I, Banat IM (2006) Use of different methods for detection of thermophilic biosurfactant-producing bacteria from hydrocarbon-contaminated and bioremediated soils. J Pet Sci Eng 50:71–77. doi:10.1016/j.petrol.2005.10.005

    Article  Google Scholar 

  • Polson EJ, Buckman JO, Bowen DG, Todd AC, Gow MM, Cuthbert SJ (2010) An environmental-scanning-electron-microscope investigation into the effect of biofilm on the wettability of quartz. SPE J 15:223–227. doi:10.2118/114421-pa

    CAS  Google Scholar 

  • Pruthi V, Cameotra S (2003) Effect of nutrients on optimal production of biosurfactants by Pseudomonas putida—a Gujarat oil field isolate. J Surfactant Deterg 6:65–68. doi:10.1007/s11743-003-0250-9

    Article  CAS  Google Scholar 

  • Saharan B, Rahu R, Sharma D (2011) A review on biosurfactants: fermentation, current developments and perspectives. Genet Eng Biotechnol J GEBJ-29 OpenURL

  • Sarafzadeh P, Hezave AZ, Ravanbakhsh M, Niazi A, Ayatollahi S (2013) Enterobacter cloacae as biosurfactant producing bacterium: differentiating its effects on interfacial tension and wettability alteration mechanisms for oil recovery during MEOR process. Colloids Surf B 105:223–229. doi:10.1016/j.colsurfb.2012.12.042

    Article  CAS  Google Scholar 

  • Sayyouh M, Al-Blehed M (1995) Effect of microorganisms on rock wettability. J Adhes Sci Technol 9:425–431. doi:10.1163/156856195x00365

    Article  Google Scholar 

  • Seethepalli A, Adibhatla B, Mohanty KK (2004) Wettability alteration during surfactant flooding of carbonate reservoirs. Paper presented at the SPE/DOE Symposium on Improved Oil Recovery, Tulsa, Oklahoma, 17–21 April 2004. doi: 10.2118/89423-ms

  • Seghal Kiran G, Anto Thomas T, Selvin J, Sabarathnam B, Lipton A (2010) Optimization and characterization of a new lipopeptide biosurfactant produced by marine Brevibacterium aureum MSA13 in solid state culture. Bioresour Technol 101:2389–2396. doi:10.1016/j.biortech.2009.11.023

    Article  CAS  Google Scholar 

  • Sen R (2008) Biotechnology in petroleum recovery: the microbial EOR. Prog Energy Combust Sci 34:714–724. doi:10.1016/j.pecs.2008.05.001

    Article  CAS  Google Scholar 

  • Soudmand-asli A, Ayatollahi SS, Mohabatkar H, Zareie M, Shariatpanahi SF (2007) The in situ microbial enhanced oil recovery in fractured porous media. J Pet Sci Eng 58:161–172. doi:10.1016/j.petrol.2006.12.004

    Article  CAS  Google Scholar 

  • Vazquez-Duhalt R, Ramírez RQ (2004) Petroleum biotechnology: developments and perspectives, vol 151. Elsevier, Amsterdam

    Google Scholar 

  • Velraeds MMC, van der Mei HC, Reid G, Busscher HJ (1996) Physicochemical and biochemical characterization of biosurfactants released by Lactobacillus strains. Colloids Surf B 8:51–61. doi:10.1016/S0927-7765(96)01297-0

    Article  CAS  Google Scholar 

  • Vijapurapu CS, Rao DN (2003) Effect of brine dilution and surfactant concentration on spreading and wettability. Paper presented at the International Symposium on Oilfield Chemistry, Houston, Texas, 5–7 February 2003. doi: 10.2118/80273-ms

  • Wang L, Tang Y, Wang S, Liu RL, Liu MZ, Zhang Y, Liang FL, Feng L (2006) Isolation and characterization of a novel thermophilic Bacillus strain degrading long-chain n-alkanes. Extremophiles 10:347–356. doi:10.1007/s00792-006-0505-4

    Article  CAS  Google Scholar 

  • Wang Q, Fang X, Bai B, Liang X, Shuler PJ, Goddard WA III, Tang Y (2007) Engineering bacteria for production of rhamnolipid as an agent for enhanced oil recovery. Biotechnol Bioeng 98:842–853. doi:10.1002/bit.21462

    Article  CAS  Google Scholar 

  • Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703

    CAS  Google Scholar 

  • Youssef NH, Duncan KE, Nagle DP, Savage KN, Knapp RM, McInerney MJ (2004) Comparison of methods to detect biosurfactant production by diverse microorganisms. J Microbiol Methods 56:339–347. doi:10.1016/j.mimet.2003.11.001

    Article  CAS  Google Scholar 

  • Zargari S, Ostvar S, Niazi A, Ayatollahi S (2010) Atomic force microscopy and wettability study of the alteration of mica and sandstone by a biosurfactant-producing bacterium Bacillus thermodenitrificans. J Adv Microsc Res 5:143–148. doi:10.1166/jamr.2010.1036

    Article  CAS  Google Scholar 

  • Zekri AY, Ghannam MT, Almehaideb RA (2003) Carbonate rocks wettability changes induced by microbial solution. Paper presented at the SPE Asia Pacific Oil and Gas Conference and Exhibition, Jakarta, Indonesia, 9–11 September 2003. doi: 10.2118/80527-ms

Download references

Acknowledgments

The authors would like to thank the EOR Research Center and Biotechnology Institute of Shiraz University for providing the technical and financial support. Also, special thanks are due to Amin Ramezani and Farzaneh Aram for their technical help in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahab Ayatollahi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rabiei, A., Sharifinik, M., Niazi, A. et al. Core flooding tests to investigate the effects of IFT reduction and wettability alteration on oil recovery during MEOR process in an Iranian oil reservoir. Appl Microbiol Biotechnol 97, 5979–5991 (2013). https://doi.org/10.1007/s00253-013-4863-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-4863-4

Keywords

Navigation